If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+36x=43
We move all terms to the left:
9x^2+36x-(43)=0
a = 9; b = 36; c = -43;
Δ = b2-4ac
Δ = 362-4·9·(-43)
Δ = 2844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2844}=\sqrt{36*79}=\sqrt{36}*\sqrt{79}=6\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-6\sqrt{79}}{2*9}=\frac{-36-6\sqrt{79}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+6\sqrt{79}}{2*9}=\frac{-36+6\sqrt{79}}{18} $
| 0.6x^2+1/5=1/8 | | -9x-12÷2+12=60 | | 5x+4+20x-6=6x+6+5x+20 | | 3x-11=-2x+7-x | | 7m^2=16 | | 10x-8=-168 | | (3x31+25)+2x31=180 | | 8+15+x=2x+10 | | 11=3x^2-6x+2 | | -10x+5+3x+10=5x+20 | | 2x-10=5x+30 | | 2x^2+21x+304=0 | | x^2+48x-1260=0 | | -3x+4-22x=11-20x+18 | | 3x+4-22x=11-20x+18 | | x+2x+3x=-6-10-20 | | -25x+4=-15x-16 | | 1x+1,5*20+3*5=77 | | 3a2-21=0 | | 10x-10-5x=10 | | 9x+43=7x+57 | | 3x+20=x+14 | | 5/x=7/x+2 | | x+6x2+15=0 | | 2/x+2=6/2x+5 | | 5x2=16x-3 | | 3x-21÷2=5x | | 3x-21/2=5x | | x(x-4)=3(x-4)+x | | 9x2+16=24x | | 9*x*x=108 | | 2(2x+1)=5+4 |